トップページに戻ります 「リンク集」へ 市民測定所に関わるよくある質問と回答 測定データや関連の資料があるページ 「論文書庫」のページへジャンプ 京都市民放射能測定所ブログにジャンプ

 ◆ ミトコンドリア障害と心筋症、アルツハイマー病、パーキンソン病、
 筋委縮性側索硬化症の関連について
  遠藤順子

ミトコンドリア障害と心筋症、アルツハイマー病、
パーキンソン病、筋委縮性側索硬化症の関連について 

遠藤順子

目 次 PDFで読む

はじめに

 ミトコンドリア病というのは、ミトコンドリア機能障害によってもたらされる病気で、主に病因としては、ミトコンドリアDNA異常によるものと、ミトコンドリアの生合成やミトコンドリアDNA複製などに関係する核DNAの異常によるものとがある。ミトコンドリアは ほぼすべての器官でエネルギー産生を担っているため、その臨床症状は多様であるが、特に多くのエネルギーを必要とする組織などで臨床症状が出やすい。福島原発事故後に、もともとミトコンドリア病であった方の症状の悪化という話を聞いた。そこで、ミトコンドリア病の発症機序などを調べている中で、アルツハイマー病、パーキンソン病などの神経変性疾患とミトコンドリア損傷の関連が気になった。遠坂俊一氏の統計によると、3・11後の福島県において、アルツハイマー病、パーキンソン病、脊髄性筋委縮症及びその関連疾患などによる死亡率の急激な上昇を示している。
 福島原発事故以来、大気中には放射性微粒子が様々な形態で再浮遊している。それらは、私たちの体内で放射線を出し続けると共に過剰な活性酸素を産生し、核DNAばかりではなく、ミトコンドリアも、細胞膜も、そして細胞質内の様々な酵素や分子をも傷つけているのではないのか。
 ミトコンドリア障害と神経変性疾患や心筋症の関連を考察することにより、現在、日本で生じているこれらの疾患による死亡率増加を解明する一助になればと思う。
 但し、現在がんやがん以外の多くの疾患について、その発症と進行に関する分子生物学的知見、新たに「分子病態学」と呼ばれるようになった分野で、文字通り革命が起こっている。以下に書いた内容も、現在私たちが知ることのできた情報に基づく暫定的な総括であり、今後の科学的発展に応じて、常に書きかえていかなければならないと考える。だが、放射線の健康影響を考えていくためには、このような、がんやがん以外の疾患に関する科学的知見の発展と深化に、最大限の注意を払い、その成果を常に取り入れていかなければならないという点は、決して変わることのない確信である。今回の論考が、ささやかではあるが、それに向けての一歩となればとも思っている。

 PAGETOP

ミトコンドリアの構造と機能、ミトコンドリアDNA(mtDNA)

 ミトコンドリアは、内膜と外膜からなる二重膜構造をもつ細胞小器官であり、酸化的リン酸化によるATP(アデノシン三リン酸)合成をはじめ、ヘム、鉄、ステロイドホルモン、脂質などの代謝に加えて、アポトーシス(細胞死)やCa2+応答などの細胞内応答の制御にも関与している。外膜には膜透過装置であるTOM複合体(translocase of the outer membrane)が存在し、細胞質ゾルで合成された前駆タンパク質などを選択的に取り込む。外膜と内膜で挟まれた膜間腔には、アポトーシスに重要な役割を果たすシトクロムCというタンパク質や酵素などが存在する。内膜には、電子伝達系を構成するタンパク質複合体やATP合成酵素複合体が存在し、ATPを産生している。マトリックスという内膜に囲まれた部分には、TCA回路(クエン酸回路とも云う)や脂肪酸β酸化系の酵素をはじめ、数百種類の酵素タンパク質が存在し、また、ミトコンドリアDNAやその複製、転写、翻訳に関与する分子も存在する(図1-1および1-2)。
 細胞の種類や組織によってミトコンドリアの形態は大きく異なっており、細胞内でミトコンドリアは活発に動き、分裂と融合を繰り返している。また、ミトコンドリアの膜とミトコンドリアDNAは動的にかつ協調的に制御されていることが明らかになってきている。


クリックすると拡大します
図1-1 細胞質とミトコンドリア内におけるエネルギー代謝
細胞内で合成されるATPのほとんどがミトコンドリア内において合成されることが分かる  出典:『サイエンスビュー 生物総合資料』実教出版


クリックすると拡大します
図1-2 ミトコンドリアの構造とエネルギー代謝  出典:ミトコンドリア ―Wikipedia

 前述のように、ミトコンドリアは独自のゲノム、ミトコンドリアDNA(mtDNA)を持っている。ヒトのmtDNAは16569塩基対、一周5μmほどの環状二本鎖であり、TFAM(mitochondrial transcription factor A)というDNAタンパク質などと結合し“核様体”と呼ばれる構造を形成している(図2)。1つのミトコンドリア内には2~10個ほどのmtDNAが存在する。従って、通常1細胞内にはおよそ数百から数千コピーのmtDNAが存在することになるが、細胞ごとにmtDNAの変異の有無や変異の比率が異なることもmtDNAの特徴のひとつである。また、mtDNAの複製は卵母細胞を通じてのみ子孫に伝えられ、遺伝子の組換えが起こらない。そのため、mtDNA変異は、その母系家系づたいに経時的に蓄積されていくことになる。新たにミトコンドリア変異が生じたとき、細胞内には、変異タイプと正常タイプの両方のDNA配列を持つミトコンドリアが混在する(この状態をヘテロプラスミーという)。このため、致死的な変異でも存在し続けることになる。細胞分裂の時、ミトコンドリアが娘細胞に分配されるが、それぞれのタイプのミトコンドリアは平等には分配されず、その比率に偏りが生じる。そのため、変異したミトコンドリアと正常なミトコンドリアの割合が次世代でどうなるかは不確実である。変異したミトコンドリアの比率があるレベルまで上昇した段階ではじめてミトコンドリア病の症状が現れる。これを閾値効果という。この閾値は、個体、器管、組織によって異なる。それぞれの組織や器官でエネルギーの需要と供給のバランスが微妙に異なるためである。
 後述するが、心筋症やパーキンソン病、アルツハイマー病、筋委縮性側索硬化症などの神経変性疾患など、エネルギー需要の高い臓器である脳や心筋の障害をきたす疾患において、ミトコンドリア機能障害及び酸化ストレスの関与が示唆されてきた。


クリックすると拡大します
図2 ミトコンドリアDNAと核様体形成  出典:医学のあゆみvol.260 No.1 p.22

 PAGETOP

ミトコンドリア機能異常の背景

 ミトコンドリア機能の変化による発病の原因は、主に三つあると言われている。①mtDNA変異が酸化的リン酸化を障害した場合、ATP産生が低下する。②反応性の高い活性酸素である過酸化水素(H)やヒドロキシラジカル(・OH)などが産生され、DNAや蛋白、脂質を損傷する。③ミトコンドリアがアポトーシス促進因子などを放出し、アポトーシス経路が進行する。上記①~③について以下に説明する。

 ①mtDNA変異によるATP産生低下
 mtDNAにはイントロン(DNA塩基配列中のアミノ酸配列には翻訳されない部分)がないため、ランダムに生じた突然変異は蛋白をコードするDNA配列を直撃する。また、DNAを保護するヒストンがなく、DNA修復も不完全である。さらに酸化的リン酸化の過程で生じる酸素ラジカルにも曝露されている。このような理由で、mtDNAは核DNAに比べ、突然変異の発生速度が10倍速いと見積もられている。酸化的リン酸化に重篤で致死的な障害を起こすようなmtDNA変異(例えば大きな欠失)は、ヘテロプラスミー(細胞内に変異したミトコンドリアと正常なミトコンドリアが混在した状態)の場合にのみ、生存可能である。一方、蛋白をコードするmtDNA遺伝子の軽度なミスセンス突然変異(点突然変異の一種で、一塩基置換によって異なるアミノ酸に変わったもの)は、ホモプラスミー(変異したミトコンドリアだけ、もしくは正常のミトコンドリアだけが存在する状態、この場合は前者を指す)であることが多い。ミトコンドリア遺伝子変異が体細胞レベルで(遺伝とは関係なく)組織特異的に蓄積していくことが、アルツハイマー病やパーキンソン病のような遅発性退行疾患の発症と関係がある可能性が考えられてきた。例えば、有糸分裂終了後の大脳基底核や大脳皮質のような組織には、mtDNAの変異が加齢に伴い蓄積することがわかっている。mtDNAは、変異率が高い上に修復機能が十分備わっておらず、有糸分裂終了後の組織や細胞の入れ替わりが遅い組織にmtDNAの変異が蓄積する原因となっている。このmtDNAの質的および量的障害により、様々な病態が関連してくる。mtDNAの突然変異の蓄積が慢性疾患の病態に関与している可能性が示唆されている。

 ②活性酸素による損傷
 ミトコンドリアにおける代謝活動などが低下すると、活性酸素種(ROS)の発生による酸化的傷害を招くことが知られている。解糖系などから得られた電子(NADH)はミトコンドリア呼吸鎖で受け渡され、最終的に酸素分子に捕獲されるが、呼吸鎖機能に障害があると、電子が過剰に滞留し、酸素分子との不均衡が生ずるためである。実際、電子伝達系から電子が2~3%漏れると、この電子は酸素と反応してスーパーオキシド(O・-)になり、これがもとでチェーンリアクション的にROSが発生する。年齢に応じて蓄積したミトコンドリアの機能異常は、かなりの部分mtDNAやその他のミトコンドリア内の高分子化合物への酸化的障害に由来しているが、これが老化の大きな要因にもなっている可能性がある。

 ③アポトーシスの促進
 ミトコンドリアから産生されるROSがアポトーシスに関連することが知られている。ミトコンドリアから産生されるROSによりアポトーシスが誘導されるメカニズムは、Ca2+の上昇、膜電位の低下、細胞内脂質過酸化、シトクロム?(ミトコンドリア内膜に弱く結合しているヘムタンパク質)の放出をはじめ、カスパターゼ-3の活性化などが関与している(図3)。後述するが、実際、心不全発症誘因の一つに心筋細胞のアポトーシスの関与が示唆されている。


図3 アポトーシスの経路  「酸化ストレスの医学」改訂第二版(診断と治療社)P.97

 PAGETOP

放射線による酸化ストレスとミトコンドリア障害

 近年、マイクロビームを用いた細胞質への放射線照射による生物影響が報告され、核DNAを標的としない放射線生物作用が存在することが明らかとなってきた。この核DNAを標的としない放射線生物作用において、細胞から生成されるフリーラジカル(活性酸素種ROS、活性窒素種RNS)並びにそれにより引き起こされる酸化ストレスが重要な役割を果たしている。すなわち、生体への放射線照射によって生成されるROSのうち、O・-およびHは比較的安定であり10および100秒ほど存在が持続する。これらはその近傍に存在するすべての生体高分子と反応し損傷を与える可能性がある。このROSと生体高分子との相互作用により有機ラジカルが形成されるが、有機ラジカルは急速に酸素と反応し、ペルオキシラジカル(ROO・)となる。ROO・は、もとの有機ラジカルよりもはるかに強い酸化剤であり、近傍の有機分子の水素を引き抜くことで過酸化物として安定する一方、さらに別の有機ラジカルを生成する。この連鎖反応は、放射線によって引き起こされる脂質過酸化反応に深く関与しており、細胞並びに細胞小器官の膜に対して放射線障害をもたらす原因となると考えられている。
 また、放射線照射直後に起きる細胞内の様々なイベントにおいて、細胞内レドックス(酸化還元)環境が放射線照射後持続的に変化することが照射数か月以降に現れる放射線障害の原因となることも示唆されている。すなわち、放射線照射後、一定時間経過後に起こるROS、RNSの生成は、それが組織や臓器において酸化ストレスの蓄積を引き起こし、照射後かなりの時間がたってからの酸化障害を引き起こす可能性がある。もし放射線による酸化障害がミトコンドリア電子伝達系(ETC)の機能維持に必要な遺伝子の変異を引き起こすのであれば、この酸化ストレス状態は放射線照射を直接受けた細胞だけでなく、その娘細胞にも受け継がれることになる。それゆえ、長期にわたる放射線によるゲノム不安定性の原因となる。このような放射線照射の結果生じる短期及び長期の酸化ストレスと生物学的影響の関係を示す知見が積み上げられてきている。(図4)
 また、細胞にアポトーシスを引き起こすメカニズムとして、ミトコンドリアからのシグナルにより活性化される内因性経路と細胞膜に存在する細胞死受容体からの外因性経路が存在するが(図3及び12参照)、放射線照射はこのうち内因性経路の活性化を引き起こす。このアポトーシスシグナル活性化に、放射線照射後に産生されるROSが関係していることを示唆する所見が多数報告されている



図4 放射線により引き起こされる酸化ストレス  出典:酸化ストレスの医学 改訂第2版p.189


「酸化ストレスの医学 改訂第2版」p.96 犬童寛子(鹿児島大学大学院医歯学総合研究科腫瘍講座)ほか
 「酸化ストレスの医学 改訂第2版p.194 山盛徹(北海道大学大学院獣医学研究科環境獣医科学講座)ほか
Inanami O,Takahashi K,Kuwabara M:Attenuation of caspase-3-dependent apotosis by Trolox post-treatment ofX-irradiated MOLT-4 cells.Int J Radiat Biol 1999;75:155-163
Ogura A,Oowada S,Kon Y,et al.:Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells.Cancer Lett 2009;277:64-71


 PAGETOP

核DNA上の遺伝子異常とミトコンドリア病

 「はじめに」で少し触れたようにミトコンドリア病の原因となるのは一つはミトコンドリアDNAの変異であるが、もうひとつは、核DNA上の遺伝子異常である。この核DNA上のミトコンドリア病の原因遺伝子はすでに200種類以上報告され、遺伝子解析技術の進歩により増加の一途をたどっている。これらの遺伝子の機能は、エネルギー代謝に直接かかわるもの、ミトコンドリアDNAの複製と発現にかかわるもの、ミトコンドリア自体の生合成にかかわるもの、ミトコンドリアへの輸送に関わるもの、蛋白質の品質管理に関わるもの、など多彩である(図5)。つまり、このことは、放射線による核DNAの損傷によっても、ミトコンドリア機能障害が導かれることを意味している。(但し、放射線による核DNAの損傷に関しては、この論考の範疇ではないので触れないこととする)


図5 ミトコンドリア病の病因  出典:医学のあゆみVol.260 No.1 2017/1/7 p.64

 PAGETOP

パーキンソン病病態へのミトコンドリアの関与

 パーキンソン病(PD)は、中脳黒質のドパミン含有神経細胞が障害され、ドパミン(中枢神経系に存在する神経伝達物質)が欠乏することにより、「手足の震え、筋肉のこわばり、歩行障害」などの運動障害にて発症する進行性の神経変性疾患である。神経変性疾患の中でアルツハイマー病に次いで多く、本邦で約14万人の患者がおり、今後も患者数の増大が予想されている。
 PDの90%は原因不明の孤発性PDに分類され、様々な遺伝子や環境因子など多くの要因により引き起こされると考えられる。一方、残りの約10%は、特定の遺伝子異常が関与し、メンデル遺伝する家族性PDに分類される。
 PDは、病理学的には神経封入体(Lewy小体)を伴う黒質(中脳の一部を占める神経核)や青斑核(橋の背側に位置する神経核)(図6)の神経細胞脱落が特徴である。パーキンソニズム症状は、黒質ドパミン神経脱落による脳内ドパミン不足により引き起こされる。PDの発症機序において、ミトコンドリアの関与の可能性は、ミトコンドリア毒物へのドパミン神経の脆弱性から注目されたが、PD患者の脳の病変部位においてミトコンドリア内膜上の呼吸鎖複合体Ⅰの酵素活性の低下が顕著であることが明らかにされたことで確認された。また、さらに黒質ドパミン神経において、ミトコンドリアDNAの欠失や置換が高頻度でみられることも報告されている。これは、黒質ドパミン神経における定期的なCa2+の流入というエネルギー代謝的な負荷が多く、他の神経に比べてミトコンドリアからのROS産生が多いからと考えられる。慢性的な酸化ストレスはミトコンドリアを傷害し、傷害を受けたミトコンドリアは活性酸素種(ROS)を発生する。ROSはさらに酸化ストレスを惹起し、負のスパイラルが形成される。


クリックすると拡大します
図6 脳の構造 (脳幹部は、中脳、橋、延髄)  出典:認知科学N08

 家族性PDについては現在10数種類の原因遺伝子が同定されている。そのうち、家族性の若年性PDの原因遺伝子PINK1およびParkinの分子レベルの研究から、これらの遺伝子がミトコンドリアの品質管理に関わること、その障害がドパミン神経変性を導くことが明らかになった。すなわち、健全な細胞内では、異常なミトコンドリアの分解機構が備わっているが、PINK1やParkinの病的変異による機能障害では、その仕組みが破綻し、その結果、損傷ミトコンドリアが蓄積し、細胞毒性が高まると推測される。また、優性遺伝性PD家系から見つかったCHCHD2変異患者の病理解析から、ミトコンドリアの機能異常が異常蛋白質の形成・蓄積に関与することが示唆されている。
 いずれにしても遺伝性PDのみならず、孤発性PDにおいても、ミトコンドリア機能異常とそれによる酸化ストレスが主要な病因であると考えられるが(図7)、何らかの遺伝的素因をもつ人が、環境因子の影響の蓄積によって発病すると推測されている。



図7 ドパミン神経ミトコンドリアの脆弱性仮説
PDで変性する黒質ドパミン神経の特徴として、L型Caチャンネルによる自律的神経活動、鉄の沈着、ドパミン産生があげられる。これらはドパミン神経の高酸化ストレス環境の要因となる。出典:医学のあゆみVol.260 No.1 p.86


 PAGETOP

アルツハイマー病とミトコンドリアの関与

 アルツハイマー病(AD)は、進行性の認知機能低下を臨床学的特徴とする神経変性疾患で、記憶や思考能力がゆっくりと障害され、最終的には日常生活の最も単純な作業を行う能力も失われる病気である。ADのほとんどは60歳以降に初めて症状が現れ、高齢者の認知症の最も一般的な原因となっている。
 ADの病理学的特徴としては、新皮質、海馬及び他の皮質下領域(図6参照)など記憶に関わる脳部位での老人斑(βアミロイド[Aβ]の蓄積)や神経原線維変化などの異常構造物の出現がある。アルツハイマー病では、蓄積したタンパク質(Aβ斑と異常リン酸化タウ蛋白)が神経細胞にダメージを与え、細胞死(アポトーシス)を引き起こす。すなわち、βアミロイド前駆体蛋白(APP)が細胞膜外と細胞膜内で切断されてβアミロイド(Aβ)が産生される。細胞内の可溶性Aβが増加するとタウ蛋白(神経軸索内の微小管結合蛋白)の異常リン酸化が誘導され、微小管から可溶性のリン酸化タウ蛋白が遊離し、神経細胞の軸索から樹状突起に移動し、結果としてシナプス変性、神経原線維変化、神経細胞死へと導かれると考えられている(図8)。さらに、タウ蛋白の異常リン酸化が神経軸索内におけるミトコンドリアの輸送を特異的に阻害することもわかっている。




図8 アミロイドカスケード仮説  出典:日本内科学会雑誌Vol.100 No.8 August 10,2011 p.2096

 また、脳組織では、ニューロンだけでなくグリア細胞(アストロサイト、オリデントロサイト、ミクログリアなど)が血中のグルコースを取り込み、乳酸に変換後、ニューロンにエネルギー源として供給している。ニューロンの軸索や樹状突起のシナプス近傍に局在するミトコンドリアはグリア細胞から供給される乳酸をTCA回路で代謝し、効率よくエネルギーを産生することで神経機能を維持している(図9)。また、細胞分裂をしないニューロンにおいては、核DNAは複製されないが、ミトコンドリアはニューロンの機能維持に不可欠なエネルギーを供給するためにmtDNAを常に複製し、新しいミトコンドリアをシナプスなどに供給している。ROSなどの酸化ストレスによりmtDNAに変異が生じると、変質したmtDNAが分解し、ATPが枯渇する。その結果、ミトコンドリア膜電位が維持されなくなり、細胞質に放出されたCa2+イオンによって活性化されたカルパイン(細胞内のプロテアーゼ)に依存した神経細胞死が誘導される。
 AD患者の脳では、インシュリンシグナルが破綻しており、それによってニューロンのミトコンドリアの機能不全がもたらされ、さらにそれにより神経細胞のエネルギーの枯渇と酸化ストレスが亢進して、核酸の酸化を通じて神経変性が引き起こされていることが分かっている。
 最近、凝集性Aβ(老人斑)が可溶性Aβに比較して毒性が小さいことが明らかになり、「Aβの凝集体は、神経毒性が極めて高い可溶性のAβに比較して、危険度が低く、一般的な考え方とは違って、神経細胞の保護に働いている」との説が提起されている。しかもこのAβの凝縮を小胞体とミトコンドリアの接触場(MAM)が制御している可能性が指摘されている。
 これらの研究は、ADとミトコンドリア傷害との直接および間接の関連を示すものとして注目される。



図9 脳組織におけるエネルギー供給体制(神経軸索内でもミトコンドリア輸送)  出典:酸化ストレスの医学 改訂第2版(診断と治療社)p.221

 PAGETOP

筋委縮性側索硬化症へのミトコンドリアの関与

 筋委縮性側索硬化症(ALS)は、上位・下位運動神経が特異的に障害される進行性の神経変性疾患である。厚生労働省の統計では、脊髄性筋委縮症及びその関連症候群に分類されている。主に壮年期に発症し、筋委縮が徐々に全身に広がり、歩行困難、言語障害、嚥下障害、呼吸障害に及び、気管切開・人工呼吸器装着などを施さなければ発症後1~5年で死に至るという、極めて重篤な症状を示す。
 ALSはその多くが孤発性ALSであるが、約10%の症例が家族性である。最近までに様々な家族性ALS(FALS)関連遺伝子が報告されている。家族性のALSの約20%がスーパーオキシドムターゼ1遺伝子(SOD1)に変異を有する。この変異型SOD1タンパク質は、凝集性が高く神経細胞内に蓄積し、特にミトコンドリア外膜や膜間腔に集積する。この変異型SOD1が発現したグリア細胞(アストロサイトやミクログリアなど)が運動神経細胞死に重要な役割を果たしていることがわかっている。NADPHオキシダーゼ(Nox)は生体内でROSを産生する酵素群だが、SOD1とRac1(タンパク質の一種)とが作用してNox活性を制御している。変異型SOD1では、この制御機構が効かないため、持続的にROSが産生され、運動神経細胞毒性を発揮している(図10)。ALSの病態解明はまだ途上であるが、家族性のみでなく、孤発性ALSにおいても酸化ストレスマーカーの増加が報告されている。



図10 グリア細胞の変異型SOD1によるROSを介した運動神経細胞毒性発揮機構  出典:実験医学 Vol.30 No.7(増刊)2012 p.181

 PAGETOP

心筋症とミトコンドリアの関与

 心筋細胞は、その個体が生命として活動しているかぎり休むことなく弛緩と収縮を繰り返し、常に多くのATPを必要とするため、ミトコンドリアを多く含んでいる。近年、心不全においても、その病態形成、進展に、スーパーオキシド(O・-)やヒドロキシラジカル(・OH)などの酸素ラジカルによるミトコンドリア機能不全が関与していることが、明らかとなり、さらに病態形成においてmtDNAが重要な役割を果たしていると考えられている。そしてまた、様々な基礎研究から不全心筋ではROSが増大し、心不全の増悪機転に酸化ストレスが重要な役割を果たしていることが明らかとなっている。不全心筋のミトコンドリアで産生された活性酸素種(ROS)は、ミトコンドリア内膜およびmtDNAをも傷つける。このmtDNAの質的および量的障害に様々な病態が関連している。
 質的な変化としては、いわゆる突然変異型のmtDNAの蓄積によるミトコンドリア病が知られている(図11)。このミトコンドリア遺伝子疾患の発症は、mtDNAの突然変異の蓄積によるもので、心筋症を含め、脳症や家族性糖尿病など多彩な病態を示す。現時点では後天性の心不全における突然変異型mtDNAの蓄積に関する検討は報告されていないが、老化個体や一部の糖尿病でごく少量の突然変異型mtDNAの検出がなされたことから、ミトコンドリア遺伝子疾患としての心筋症以外にも、mtDNAの突然変異の蓄積が慢性疾患の病態に関与している可能性も示唆されている。


クリックすると拡大します
図11 アメリカ心臓協会(AHA)による定義と分類  出典:循環器病の診断と治療に関するガイドライン2011 p.6

 また、mtDNAは個々のミトコンドリア内に複数存在するが、不全心筋のmtDNAコピー数は減少し、さらにmtDNAでコードされている電子伝達系複合体サブユニットのメッセンジャーRNA(mRNA)の低下および複合体酵素活性の低下を認める。ミトコンドリア電子伝達系の複合体酵素の活性低下は電子の伝達障害を来たし、さらなるROSの発生という悪循環を形成し、ROSによる心不全の病態形成の機序の一つと考えられている。このことは、ROSの産生による生体内の反応は常に抗酸化能とのバランスで成り立つことを示している。
 心不全をきたす要因のひとつに、心筋細胞死がある。心筋細胞のアポトーシスを引き起こす細胞内シグナル伝達系は大きく3つに分けられる。デスリガンドが受容体に結合しデスドメインを介する経路(外因性経路)、ミトコンドリアを介する経路(内因性経路)、小胞体を介する経路である。このうち、ミトコンドリアを介する経路は、DNA損傷、酸化ストレスなど様々な要因により活性化され、ミトコンドリアからシトクロム?をはじめとするアポトーシス誘導因子が放出される。3つの経路ともに最終的にタンパク分解酵素であるカスパターゼ3を活性化することにより、アポトーシスを誘導する(図12)。
 また、ミトコンドリア由来のROS増加はmtDNAの損傷を引き起こし、結果として電子伝達系を悪化させる。それにより多量のROSを産生し、タンパク質やリン脂質の過酸化をも引き起こし、これに連鎖して多くの酸化ストレスが生じ、それに続く細胞死も病態の一つとして報告されてきている。



図12 アポトーシス誘導経路  出典:日本内科学会雑誌 Vol.101 No.2 2012 p.315

 PAGETOP

チェルノブイリ事故後の循環器疾患と神経疾患に関する報告

 チェルノブイリ事故後に増加した様々な疾患に関する病理学的研究は、主にベラルーシ・ゴメリ医科大学のユーリ・バンダジェフスキー博士によって行われていた。博士は、心血管系に関して、心電図異常と体内放射性元素濃度の相関を認めており、「心筋の酸化還元反応の混乱による異常と心筋内伝導障害」を指摘している。さらに、突然死した患者の剖検標本では、「びまん性の心筋異常=心筋細胞のジストロフィー病変と壊死による組織間浮腫や筋線維分裂」が認められたと報告している(図13)。また、ラットを使った動物実験においては、放射性セシウムを投与したグループでは、「心筋に組織溶解を伴わない萎縮性病変。筋小胞体網の細管拡張、ミトコンドリアの膨隆、巣状の筋小胞体の浮腫」が認められたことを報告している(図14)。また 神経系においては、動物実験で大脳における神経伝達物質の不均衡の出現を指摘している。


図13 突然死した40代男性の心筋細胞  出典:ユーリ・バンダジェフスキー「放射性セシウムが与える人口学的病理学的影響」


図14 白ラットの心筋細胞(体内セシウム45Bq/㎏)ミトコンドリアの量と寸法の増大  出典:図12と同じ

 アレクセイ・V・ヤブロコフ氏らによるチェルノブイリ調査報告書(いわゆるヤブロコフ報告書)によると、心血管系に関しては、「ベラルーシにおいて、心血管系疾患がチェルノブイリ事故前に比べて事故後10年間に全国で3~4倍に増加し、汚染度の高い地域ほど増加幅が大きかった」、「ウクライナにおいて、汚染地域における1996年の循環器疾患罹患率は、ウクライナの他の地域に比べて1.5倍高かった」「ロシアにおいては、リクビタートルの循環器系疾患罹患率が、1986年以降1994年までに、23倍に増加した」など多数の記述がある。また、神経疾患に関しては、「ベラルーシ人リクビタートルの神経系及び感覚器における疾患の発生率が、1991年から2000年にかけて2.2倍上昇した」「ウクライナにおいて、1995年から1998年にかけて認知面への影響調査が行われ、被曝群(特にリクビタートル)における認知課題遂行能力の有意な低下があった」「ロシアで『チェルノブイリ認知症』という現象の事例の増加が見られた。『チェルノブイリ認知症』は成人の脳細胞が破壊されることによって引き起こされ、記憶や書記行動の障害、けいれん、拍動性の頭痛などの症状がある」など多数の報告がされている。さらに老化に関しては、「老化の早まりはリクビタートルに見られる典型的な特徴であり、その多くは平均的な一般集団より10年から15年早く疾患を発症した」「脳内血管を含む血管における老化の早まり(40歳前後で始まる老人性の脳障害)、老人に特徴的な高次の精神機能障害、老人性の抗酸化機能の低下」なども多数報告されている。

 PAGETOP

福島原発事故後の人口動態統計から

 遠坂俊一氏が人口動態統計により、各県ごとの死亡率推移と死因別死亡率を明らかにしている。そのグラフを見ると、福島県における死亡率は、2011年以前から全国平均に比して高めに推移していたが、2011年以降その差が明らかに拡大している。また、パーキンソン病、アルツハイマー病、脊髄性筋委縮症及びその関連症候群、血管性及び不明の認知症、老化、インフルエンザなどにおいて、2011年以降、顕著に死亡率が上昇している(図15)。また、小柴信子氏による統計では、急性心筋梗塞による死亡率上昇が福島県において顕著である(図16)。
 インフルエンザや老衰による死亡率の増加の原因は、免疫力低下を示唆している。免疫系細胞内のミトコンドリアの障害があるなら、免疫力は低下するし、感染症も増え重篤化するだろう。老化もミトコンドリア機能低下の一つの現れとして説明できる。被曝した全ての人々のミトコンドリア障害の可能性を考えると、今後、日本の人口減少、死亡率の増加はますます顕著になっていくことが予想される。
 バンダジェフスキー博士が見た「ジストロフィーと壊死の形態をとる瀰漫性の心筋細胞異常」は、ミトコンドリア障害によりアポトーシスが促進された心筋細胞ではなかったのか。ロシアで見られた「チェルノブイリ認知症」は、福島で増えているアルツハイマー病や血管性認知症及び詳細不明の認知症と同様の機序ではないのか。被爆者に見られたブラブラ病はミトコンドリア障害だったのではないのか。放射線によるミトコンドリア障害によって様々な症状が引き起こされている可能性がある。


クリックすると拡大します
図15 死亡率の推移(a)と死因別死亡率(b)~(h) 全国と福島県の比較(遠坂俊一氏作成資料より)



図16 急性心筋梗塞による県別死亡率の推移(2017/6/3渡辺悦司氏の講演資料スライドより抜粋)

 PAGETOP

おわりに

 直接の放射線の照射によるゲノム・エピゲノム、細胞膜、イオンチャンネルなど細胞組織の損傷、放射線が生みだす活性酸素・フリーラジカルによる「酸化ストレス」による広範囲の細胞組織の損傷、それらががんやがん以外の広範囲の疾患を引き起こすことは、すでに指摘されてきた。老化や免疫力低下とミトコンドリア活性の低下との関連、原爆被爆者や原発労働者の「ブラブラ病」とミトコンドリア活性の低下との関連なども指摘されてきた。さらに福島原発事故後、神経変性疾患(アルツハイマー病、パーキンソン病、側索硬化症ALSなど)やミトコンドリア病などの「難病」の多発傾向がはっきり現れている。本論文の問題意識は、これら一連の現象が、放射線による「ミトコンドリア機能損傷」という中心概念によって一系列のメカニズムに総括することができるのではないかという点にある。放射線の直接・間接の作用による核とミトコンドリアのDNAの損傷から始まり、ミトコンドリアでのエネルギー代謝の障害、損傷ミトコンドリアからのさらなる活性酸素の産生、細胞死(アポトーシス)の誘導へと、そしてほとんど細胞分裂をしない重要組織である神経細胞や心筋細胞などの細胞死による重大な損傷へと進む道筋が見えてきたのではないかと考える。
 原爆、核実験、原発・核燃サイクル運転、原発・核事故などにより放射能は多かれ少なかれ、日本中、世界中に降り注いだ。放射能の影響は個人差もあり、放射線に敏感な人ほど早く影響は出るが、「被曝したあらゆる人に 必然的に 多かれ少なかれ漏れなく 何らかの影響が出る」と言わざるを得ず、それは、現在生きている人間のみではなく、子々孫々に影響する。今後、人類がこの地球上で生き残っていくうえで、損傷したミトコンドリアDNAが組換えられることなく母性遺伝され続け、変異が蓄積していくとしたら、人類全体の健康に、人類の種としての生存能力そのものに影響を及ぼさざるを得ないだろう。
 遺伝的影響を苦慮する生物学者や遺伝学者を排除して、物理学者たちが作り上げてきたICRP理論は、ただのまやかしだ。あらゆる生物の細胞やDNAを分子生物学的に追及すれば、放射能汚染によって傷つく細胞を、個人差も細胞内小器官における差もすべて無視して換算係数であらわすことなどできるはずがない。分子レベルの病態が明らかになりつつある現在、ICRP理論は時代遅れの理論であるとともに、一つの係数で被曝影響を換算することは科学を無視した根拠のない虚構であると言わざるを得ない。内部被曝を軽視するICRP理論はひとえに核産業擁護のためだけにあると断言して間違いない。
 そしてまた、このICRP以上の「放射能安全論」を繰り広げている日本政府とそれを支える御用学者たちは、生命科学を無視し、被ばく被害全体を隠蔽しようとしている。絶対に許すわけにはいかない。

 この論考を書くにあたり、遠坂俊一氏と渡辺悦司氏、小柴信子氏に多くのデータや知見を頂いた。この場をお借りして心より感謝申し上げたい。


引用文献・参考文献
  • A・V・ヤブロコフほか「調査報告 チェルノブイリ被害の全貌」岩波書店 2013
  • 週刊 医学のあゆみ vol.260 No.1 2017 1/7号, vol.257 No.5 2016 4/30号 医歯薬出版
  • 実験医学 増刊 vol.30 No.17 2012 羊土社
  • 日本内科学会雑誌 August 10,2011 社団法人 日本内科学会
  • 日本内科学会雑誌 February 10,2012 社団法人 日本内科学会
  • 日本内科学会雑誌 August 10,2015 社団法人 日本内科学会
  • 吉川敏一監修「酸化ストレスの医学」改訂第2版 診断と治療社 2014
  • ユーリ・I・バンダジェフスキー「放射性セシウムが人体に与える医学的生物学的影響」合同出版 2011
  • ユーリ・I・バンダジェフスキー「放射性セシウムが与える人口学的病理学的影響」合同出版 2015
  • 米川博通「生と死を握るミトコンドリアの謎」技術評論社 2015
  • ハリソン内科学 第1版 メディカルサイエンスインターナショナル 2003
  • 田熊一敝ほか「ミトコンドリア障害と神経系のアポトーシス-アルツハイマー病解明へのアプローチ-」日薬理誌134,180-183 2009
  • 永井真貴子ほか「筋委縮性側索硬化症も病態解明と治療戦略」北里医学 2012;42:85-93
  • 拡張型心筋症ならびに関連する二次性心筋症の診療に関するガイドライン 2011
  • 高橋良輔編「神経変性疾患のサイエンス」(南山堂) 2007
  • 一瀬白帝、鈴木宏治編著「図説 分子病態学」(中外医学社) 1995

 PAGETOP
京都市民放射能測定所 連絡先
 〒612-0066 京都市伏見区桃山羽柴長吉中町55-1 コーポ桃山105号室
  tel/Fax:075-622-9870  e-mail:shimin_sokutei@yahoo.co.jp